How over interpretation of simple behavioral models can lead to unexpected results: In search of the optimal sampling distributions for delay values on the Restaurant Row Task

Nathaniel J. Powell¹, Sukriti Gupta², Aayush Malhotra², Ryan Fayyazi², Jeremy K. Seamans ${ }^{1}$
Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
University of British Columbia, Vancouver, BC, Canada
688.19

EEE8

http://doi.org/10.1038/nn.3740

On this task we model animal's decisions as a logistic function. Optima sampling for this function would weight sampling nearer the threshold.

Acknowledgements

We thank the Society for Neuroscience for a Professional Development Award that supported travel to present this poster. We would also like to thank Jamie Grewal for technical support on this project.
This work was supported by: Canadian Institutes of Health Research Grants MOP-93784 and MOP-84319

Simulation: Precision and Accuracy of different sampling distributions

We simulated 4 sets of 50 trials with an actual threshold at $5,10,15$, and 20 seconds, and tested the precision and accuracy of the different sampling distributions on the measured thresholds from the Bayesian GLM.

Conclusions

Optimal sampling for a simplified theoretical model may have unintended consequences on actual animal behavior
flavor preferences on the restaurant row task are similar to human flavor preferences, in that they are generally consistent but vary day by day

Modified Restaurant Row Task: Skid Row

Precision from Rat Data
What goes wrong with Unimodal Sampling?

The unimodal sampling paradigm presents the animals with a small array of choices relative to the other options, and there is less advantage to be gained by avoiding high delays or choosing low delays, hence the actual flavor preferences displayed on the task are less consistent and meaningful.

 model) are relatively stable, but do vary, especially in some animals

