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Background

✓ Optimal	sampling	for	a	simplified	theoretical	model	may	have	unintended	

consequences	on	actual	animal	behavior	

✓ flavor	preferences	on	the	restaurant	row	task	are	similar	to	human	flavor	

preferences,	in	that	they	are	generally	consistent	but	vary	day	by	day

Conclusions

In the Restaurant Row task (Steiner and Redish 2014) animals make sequential wait/skip decisions at 4 
feeder locations offering different flavors of food with a randomly chosen delay on each visit. The 

probability of waiting out a particular delay length vs skipping it is used to determine animal’s preference 
for each food flavor. Specifically, the animal’s preferences on this task are modeled by fitting a logistic 

function to their probability of waiting for a reward as a function of delay length. The threshold values of 
these logistic functions represent the relative value of each reward option. The longer animals are 

willing to wait, the more valuable the reward. Previously delay values were sampled randomly from a 
uniform distribution, which results in a large number of easy decisions (delays well below or above 
threshold will be accepted or rejected at nearly 100% rates). In order to maximize the information 
gained from each feeder visit, it would be optimal to sample most heavily near the threshold of the 

sigmoid function where the information density of each decision is the highest.  However we discovered 
that this sampling pattern had unintended consequences on the animal’s behavior on the task.

Modeling	Decisions	on	Restaurant	Row

The	Restaurant	Row	Task
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calculated explicitly as an estimate from con-
structed imaginations of potential future out-
comes. Past effort is easy to measure but has a
limited (though nonzero) correlation with future
value. In contrast, calculating value from ex-
pected future outcomes has its own estimation
uncertainties. If the correlation between past ef-
forts and future value provides better predictions
than the uncertainties of future outcomes, then
animalsmay have evolved processes that use past
effort as a proxy to estimate future value (16, 19).
This can explain our observation that the postcon-
sumption evaluation increases proportionally to
the time spent waiting for the reward in all three
species (fig. S13 and supplementary text S5).
The fact that susceptibility to sunk costs only ac-
crued in the wait zone implies that valuations in
the offer zone depend on different processes
that do not includemeasures of effort spent, but

that may be more related to direct estimates of
future value.
The SDVL theory hypothesizes that energy

spent working toward reward receipt moves the
individual into a poorer energy state, enhancing
the perceived value of the yet-to-be-obtained re-
ward (19, 20). This continued work can thus es-
calate commitment of continued reward pursuit
with growing sunk costs. Similarly, the WTC
theory describes the sunk cost phenomenon as
an increasing contrast between the decision-
maker’s current physical state and the goal (21).
SDVL andWTCpropose that either physiological
or psychological states could drive added value,
leading to a susceptibility to sunk costs. How-
ever, we did not observe sunk costs accruing
during the offer zone, even though time spent in
the offer zone is equivalent in physical and cog-
nitive demands to time spent in the wait zone.

Simple explanations from the WTC and SDVL
theories would predict sunk costs to accrue in
the offer zone as well.
Past-effort heuristics, SDVL, and WTC can in-

deed be prominent drivers of the sunk cost effect
in our data when sunk cost effects are present.
Therefore, our work brings up an intriguing ques-
tion: How do decision-making processes differ
between thewait zone (susceptible to sunk costs)
and the offer zone (not susceptible to sunk costs)?
One possibility is that decisions made in the

offer zone and wait zone may rely on separate
processes that calculate value in distinct ways
through dissociable neural circuits (22–24). Re-
cent findings from other foraging tasks suggest
that choosing to remain committed to already
accepted options accesses different valuation al-
gorithms than deliberating between distant op-
tions (16, 25–27). We suggest that wait zone

Sweis et al., Science 361, 178–181 (2018) 13 July 2018 2 of 4

Fig. 1. Task schematics. (A) In the Restaurant
Row task, food-restricted rodents were trained on
a maze in which they encountered serial offers
for flavored rewards in four “restaurants.” Each restaurant
contained a separate offer zone and wait zone.
Tones sounded in the offer zone; a fixed tone pitch
indicated the delay for which rodents would have
to wait in the wait zone (1 to 30 s, random
on offer entry). Tone pitch descended in the wait
zone during the delay “countdown.” Rodents
could quit the wait zone for the next restaurant
during the countdown, terminating the trial. (B) In
the web-Surf task, humans performed an analogous
30-min computer-based foraging paradigm in
which they encountered serial offers for short
entertaining videos from four “galleries.” A static
“download bar” appeared in the offer phase indicating
delay length (1 to 30 s, random on offer entry),
which did not begin downloading until after
entering the wait phase. Downloads could be quit
during the wait phase. Humans were also asked
to rate each video on a scale from 1 (least enjoyable)
to 4 (most enjoyable) after viewing and to rank the
genres at the end of the session.
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a decision to stay or skip at a given zone (when offered a given delay), 
the only information the rat had was the flavor of the food offered 
(flavor locations remained constant throughout the experiment), the 
delay it would have to wait (delay signaled by pitch of the auditory 
cue) and the probability distribution of any future offers (offers were 
drawn from a uniform distribution of 1–30 s or 1–45 s).

Rats ran one 60-min session per day. This time limit meant that 
rats had a time budget of 60 min to spend foraging for food. Because 
the session was time-limited, the decision to stay or skip a zone was 
not independent of the other zones: waiting at one zone was time that 
could have been spent at another zone. An economically maximizing 
rat should distribute its time among the offers, waiting for valuable 
offers but skipping expensive offers. Assuming that an animal likes 
some flavors more than others, the economic value of an offer should 
depend on the delay offered and the animal’s preferences.

RESULTS
Revealed preferences
We trained four rats on the Restaurant Row task (Fig. 1). Thresholds and 
preferences were determined by using an economic framework. All four 
rats showed similar behaviors in that they were likely to wait through the 
delay for delays less than a threshold, but unlikely to wait through the delay 
for delays greater than a threshold. When rats skipped an option, they 
left within the first ~5 s, independent of delay (Supplementary Fig. 1).  
The threshold between waiting and skipping tended to be different for 
the different flavors for a given rat (Fig. 1b and Supplementary Fig. 1).  
The fact that rats either stayed through the entire delay or left after a 
very stable 3 s implies that rats were not waiting for a specific delay 
cue but were making economic decisions based on the delay offered 
(Supplementary Fig. 1). These thresholds were consistent within a rat 
but differed among rats (Fig. 1c–e), indicating an underlying revealed, 
economic preference for each flavor of food that did not change across 
a session (Supplementary Fig. 2). There were no differences in reward 
handling between delays; rats generally waited 20–25 s after reward 
delivery before leaving for the next zone (Supplementary Fig. 3).

To directly test whether the rats were making economic decisions 
(comparing value and cost), we ran two of the rats, after completing the 
primary Restaurant Row experiment, on a variant of the task in which 

one reward site provided three times as much food as the other three sites. 
In this control task, rats were run in four 20-min blocks, so that each site 
could be the large reward site for one block. (The order of which reward 
site provided excess reward was varied pseudorandomly. Rats were 
removed to a nearby resting location for 1 min between blocks.) Rats 
were consistently willing to wait longer for more food (Supplementary 
Fig. 4). All results reported here except for those in Supplementary 
Figure 4 are from the primary Restaurant Row experiment.

Reward responses
We recorded 951 neurons from orbitofrontal cortex (OFC) and 633 neu-
rons from ventral striatum (vStr) (see Supplementary Fig. 5 for record-
ing locations). Neurons were identified as reward-responsive if their 
activity during the 3 s following reward delivery was significantly differ-
ent (P < 0.05, Wilcoxon) than a bootstrapped (n = 500) sample of activity 
during 3-s windows taken randomly across the entire session25,29. 81% 
of OFC neurons responded to reward; 86% of vStr neurons responded 
to reward. Responses in both OFC and vStr often differentiated among 
the four reward sites (Supplementary Figs. 6 and 7).

Because responses differentiated among rewards, a decoding algo-
rithm applied to these neural ensembles should be able to distinguish 
among the reward sites. We used a Bayesian decoding algorithm with 
a training set defined by the neuronal firing rate in the 3 s following 
delivery of reward (which we used to calculate p(spikes | reward)) or 
a training set defined by the neuronal firing rate in the 3 s following 
entry into a zone (which we used to calculate p(spikes | zone)). To pro-
vide a control for unrelated activity, we also included a fifth condition 
in our calculation, the average neuronal firing rate during times the rat 
was not in any countdown zone. Thus, the training set consisted of five 
expected firing rates: firing rate after reward receipt or zone entry (i) 
at banana, (ii) at cherry, (iii) at chocolate, (iv) at unflavored and (v) on 
the rest of the maze. From this training set, Bayesian decoding uses the 
population firing rate at a given time to derive the posterior probability 
of the representation p(reward | spikes) or p(zone | spikes). For simplic-
ity, we will refer to these two measures as p(reward) and p(zone).

To pool data from all four sites, we categorized and rotated each 
reward site on the basis of the current position of the rat. This gave 
us four sites that progressed in a serial manner: the previous site, the 

Figure 1 Restaurant Row and revealed 
preferences in rats. (a) The Restaurant Row task 
consisted of a central ring with four connected 
spokes leading to individual food flavors. 
Rats ran counterclockwise around the ring, 
encountering the four invisible zones (square 
boxes) sequentially. Color reflects flavor: pink, 
cherry; yellow, banana; black, unflavored (plain); 
brown, chocolate. (b–e) Rats typically waited 
through short delays but skipped long delays. 
Each panel shows the stay or go decisions for 
all encounters of a single rat running a single 
session (R210-2011-02-02). A small vertical 
jitter has been added for display purposes. 
Thresholds were fit as described in the Online 
Methods. (f–i) Rats R210 (f), R222 (g), R231 (h)  
and R234 (i) each demonstrated a different 
revealed preference that was consistent within 
a rat across all sessions but differed among 
rats. Thresholds were fit for each flavor for each 
session. Each panel shows the mean fit threshold 
for a given rat, with s.e.m. over sessions. An 
important consideration is to control for the 
possibility that rats were waiting for a specific 
cue before leaving the zone.
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Figure 14.6: Examples of sigmoid functions of a single variables. The left panel
shows sigmoids with the same gain but different thresholds. The right panel shows
sigmoids with the same threshold but different gains.

linear function cannot be used for extrapolation to large doses, and we might instead want
to use an exponential link function such as y = exp

(

β0 + β1x
)

.

14.1.7.1 The sigmoid (a.k.a. logistic) function

A frequently used link function is the sigmoid , also known as the logistic:

y = sig(x) = 1
/(

1 + exp(−x)
)

(14.12)

Notice the negative sign in front of the x. The sigmoid function ranges between 0 and 1.
The sigmoid is nearly 0 when x is large negative, and is nearly 1 when x is large positive.

For linear combinations of predictors, the sigmoid link function is most conveniently
parameterized in x threshold form. For a single predictor variable, the sigmoid link function
applied to the linear function of the predictor yields

y = sig (x; γ, θ) = 1
/(

1 + exp (−γ (x − θ))
)

(14.13)

where γ, called the gain, corresponds to β1 in Equation 14.2, and where θ, called the thresh-
old, corresponds to −β0/β1 in Equation 14.2.

Examples of Equation 14.13, i.e., the sigmoid of a single predictor, are shown in Fig-
ure 14.6. Notice that the threshold is the point on the x axis for which y = 0.5. The gain
indicates how steeply the sigmoid rises through that point.

Figure 14.7 shows examples of a sigmoid of two predictor variables. Above each panel
is the equation for the corresponding graph. The equations are parameterized in x threshold
form, as in Equation 14.4. In other words, y = sig

(

γ
(∑

k wkxk − θ
))

, with
(∑

k w2k
)1/2
= 1.

Notice, in particular, that the coefficients of x1 and x2 in the plotted equations do indeed have
Euclidean length of 1.0. For example, in the upper-right panel,

(

0.712 + 0.712
)1/2
= 1.0,

except for rounding error.
The coefficients of the x variables determine the orientation of the sigmoidal “cliff”. For

example, compare the two top panels in Figure 14.7, which differ only in the coefficients,

Kruschke,	J.	(2014).	Doing	Bayesian	data	analysis:	
A	tutorial	with	R,	JAGS,	and	Stan.	Academic	Press.

μ =
1

1 + e(−γ(x−θ))y	~	dbern(µ)
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Simulation:	Precision	and	Accuracy	of	different	sampling	distributions

We	simulated	4	sets	of	50	trials	with	an	actual	threshold	at	5,	10,	15,	and	20	
seconds,	and	tested	the	precision	and	accuracy	of	the	different	sampling	

distributions	on	the	measured	thresholds	from	the	Bayesian	GLM.
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We	fit	a	Bayesian	Generalized	Linear	Model	with	a	Logistical	Link	function	
using	JAGS	in	Matlab.		This	model	uses	numerical	methods	to	find	a	

probability	distribution	over	the	threshold	for	the	logistic	decision	model.

Bayesian	Logistic	GLM

On	this	task	we	model	animal’s	decisions	as	a	logistic	function.		Optimal	
sampling	for	this	function	would	weight	sampling	nearer	the	threshold.

We	used	4	individual	raspberry	Pis	to	
control	each	feeder	zone,	playing	

countdown	tones	and	displaying	a	visual	
stimulus	of	the	amount	of	time	remaining	
in	each	zone,	and	firing	the	feeders	if	the	

animal	waited	out	the	delay

We	modified	the	restaurant	row	task	
geometry	so	animals	could	be	recorded	

from	below
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The	unimodal	sampling	paradigm	presents	the	animals	with	a	small	
array	of	choices	relative	to	the	other	options,	and	there	is	less	
advantage	to	be	gained	by	avoiding	high	delays	or	choosing	low	
delays,	hence	the	actual	flavor	preferences	displayed	on	the	task	

are	less	consistent	and	meaningful.		

Flavor	preferences	on	the	Restaurant	row	task	(assessed	using	the	interleaved	uniform	samping	
model)	are	relatively	stable,	but	do	vary,	especially	in	some	animals.


