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Abstract

The modification of synaptic weights is thought to be a fundamental mechanism underlying
learning. Therefore, a primary objective of neuroscience is to discover the algorithms which
govern synaptic updates to produce learning in different behaviours. The mathematical
formalization of synaptic update rules has been of particular interest to computational neu-
roscientists, and the the current canon of formalized rules has been successful in modeling
various neural phenomena. However, hand-deriving them from in vitro experimental obser-
vations is slow, and proposed rules cannot be tested directly in freely learning organisms.
This thesis contributes the synaptic update rule finder (SURF), a framework for automati-
cally inferring the update rule and naive synaptic weights controlling the circuit underlying
a given plastic behaviour, from a time series of neural activity observations from that cir-
cuit over the course of learning in a real organism. The test case chosen for this thesis is
habituation of the tap-withdrawal response in Caenorhabditis elegans.
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Inferring Synaptic Weight Dynamics with a
Circuit Simulator

1 Introduction

One of the primary objectives of neuroscience is to discover the algorithms with which ner-
vous systems process information in order to produce behaviour. In both biological and
artificial neural agents, behaviour is the emergent result of a response cascade through a
network of interconnected, lower-level computational units - such as nodes in a policy net-
work or neurons in a brain - triggered by some input. In biological neural networks, the
connection between a pair neurons is called a synapse. Synapses are the sites of electro-
chemical communication between neurons, and can be categorized into two broad types:
chemical synapses and electrical synapses. Electrical synapses are composed of channels
which directly link the intracellular spaces of a pair of neurons, allowing bidirectional pas-
sive diffusion of electrical currents between them [1]. A Chemical synapse is a unidirectional
junction at which the axon terminal of an active presynaptic neuron releases neurotrans-
mitter molecules onto the dendrite of a postsynaptic neuron. The neurotransmitters bind
specific receptors on the dendrite membrane, triggering various molecular processes in the
postsynaptic neuron. Principle among these processes is the opening of ion channels, which
in turn causes depolarization or hyperpolarization of the postsynaptic neuron’s membrane,
propagating the signal forward [2]. When two neurons are connected via a chemical synapse,
the magnitude of the influence exerted by the upstream neuron on the activity of the down-
stream neuron is determined by a number of factors, such as the number of ion channels
and receptors on the postsynaptic dendrite, and the amount of neurotransmitter released
from the upstream axon terminal. This magnitude is often abstracted to a scalar value,
called the synaptic weight. Similarly, the weight of an electrical synapse is determined by
quantities such as the number and conductance of the channels that comprise it.

In 1890, William James proposed the notion that experience-driven changes in a behaviour
are mediated by physical changes in the neural pathways responsible for it [3]. Shortly
thereafter, Eugenio Tanzi and his student Ernesto Lugaro introduced the idea that repetitive
activation of a neural pathway might increase the efficiency of transmission (later termed
weight) across articulations between neurons (later called synapses) within the pathway,
and claimed that this might underlie the phenomenon described by James [3]. This line of
thinking culminated in Donald Hebb’s landmark book The Organization of Behaviour [4],
which brought synaptic plasticity, or modification of synaptic weight, to the forefront of
learning research. In this book, Hebb presents three main postulates [4]:

1. When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing B, is increased.

2. Groups of neurons that tend to fire together form a cell assembly whose activity can
persist after the triggering event and serves to represent it.
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3. Behaviour patterns are built as cell assemblies become interconnected through expe-
rience, and they are executed as activity from one assembly propagates through the
others in a particular phase sequence.

Today, most learning theories incorporate the idea that changes in synaptic weight are a
fundamental mechanism by which a network’s behaviour is modified [5, 6]. The first ex-
perimental confirmation of Hebb’s postulates came in the form of long-term potentiation
(LTP) at synapses in the rabbit hippocampus [7]. LTP describes the facilitation of synaptic
transmission induced by coincident presynaptic and postsynaptic depolarization. Long-term
depression (LTD), which requires presynaptic activity without a coincident postsynaptic re-
sponse, has been observed as well [8, 9]. Potentiation and depression of inhibitory synapses
has also been demonstrated, but relies on slightly different mechanisms [10]. These re-
sults demonstrate that experience-driven weight modulation is an important capability of
synapses throughout the brain. It is now believed that LTP and LTD play critical roles in
producing the neural assemblies that Hebb proposed, and that these processes play a central
role in learning [11, 6].

Starting with Hebb, significant effort has been spent on mathematically formalizing synaptic
update rules [12], typically as differential equations which take as arguments the presynaptic
and postsynaptic membrane potentials, and the current synaptic weight. The current canon
of formalized rules has been successful at modeling various neural phenomena, such as
hippocampal associative plasticity [13, 9], visual receptive field formation [13, 14], and spike-
timing dependent plasticity [15]. However, hand-deriving them one at a time is a slow
process, and restricts the complexity that the rules can feasibly achieve. This process is
further complicated by the fact that weight updates are typically small [16] and involve a
specific, limited subset of synapse, and cannot yet be observed reliably in vivo. Therefore, a
different approach is needed to fully characterize the algorithms which dictate how adaptive
changes in neural behaviour are accomplished [17, 18]

This thesis contributes the synaptic update rule finder (SURF), a framework for automati-
cally inferring the update rule and naive synaptic weights controlling the circuit underlying
a given plastic behaviour, from a time series of observations of the activity of the circuit’s
neurons over the course of learning in a real organism. The test case chosen for this the-
sis is habituation of the tap-withdrawal response in Caenorhabditis elegans, a species of
roundworm.
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2 Background

2.1 Formalized Synaptic Update Rules

This section provides an overview of the current canon of synaptic update rules. Hebb’s
postulates are usually formalized as the following synaptic update rule [19]:

τw
dw

dt
= vu, (1)

where w ∈ Rn is the weight vector for n incoming synapses, v ∈ R is the postsynaptic
activity (e.g. firing rate), u ∈ Rn is the activity vector for the presynaptic neurons, and
τw ∈ R is a rate constant. Hebb’s rule results in unbounded synaptic weight growth and
cannot explain synaptic depression, but has led to a number of other equations with more
biologically valid properties. The following is an incomplete list of alternative synaptic
update rules which adhere to Hebbian principles:

Presynaptic Threshold Rule [19]:

τw
dw

dt
= v(u− θu), (2)

where θu ∈ Rn is a vector of presynaptic thresholds.

Postsynaptic Threshold Rule [19]:

τw
dw

dt
= (v − θv)u, (3)

where θv ∈ R is a postsynaptic threshold.

Covariance Rule [19]:

τw
dw

dt
= C ·w, (4)

with input covariance matrix C = u · uT − u · uT , where the bar denotes the mean of the
matrix (i.e. average u over the course of training).

Oja’s Rule [20]:

τw
dw

dt
= vu− αv2w, (5)

with α ∈ R.
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Bienenstock-Cooper-Munro Rule [13]:

τw
dw

dt
= vu(v − θv) τθv

dθv
dt

= v2 − θv, (6)

where sliding threshold θv ∈ R induces competition between synapses.

Spike-Timing Based Rule [19]:

τw
dw

dt
=

∫ ∞
0

(H(τ)v(t)u(t− τ) +H(−τ)v(t− τ)u(t))dτ, (7)

where H(τ) determines the rate of synaptic modification that occurs due to postsynaptic
activity separated in time from presynaptic activity by an interval τ .

It is interesting to note that artificial neural networks also modify their behaviour through
the modification of weights, a process often controlled by learning rules which strongly
resemble the biological ones listed above. For example, gradient descent with error back-
propagation updates weights according to the differential equation

dW
(l)
ij

dt
= −ηt∇

W
(l)
ij
C((W)t) = −ηt ∂(a

(l)
i )t

∂W
(l)
ij

D(l+1)∑
k=1

∂

∂a
(l+1)
k

C((W)t)
∂(a

(l+1)
k )t

∂a
(l+1)
j

. (8)

Here, η is the step size; W
(l)
ji is the weight of the edge between node j in layer l − 1 and

node i in layer l; (ali) is the activation of node i in layer l; and C(·) is a cost function (e.g.
mean squared error). Indexing with t indicates the values of the variable being indexed at
optimization step t.

2.2 C. elegans & Habituation

The test case for SURF is the habituation of the tap-withdrawal response (TWR) in
Caenorhabditis elegans, a 1mm long roundworm. C. elegans has a fully-mapped genome
[21, 22], cell lineage [23] and connectome, which is comprised of 302 neurons and is invariant
across individuals [24]. These features, along with its short life cycle and ease of propagation
[25], make C. elegans an ideal model organism for neuroscience research. C. elegans was
chosen to be the test subject for SURF for three reasons. Firstly, its small, invariant and
fully mapped connectome allows simulation of the worm’s nervous system. Secondly, C. ele-
gans can learn, with the circuitry underlying some types of learning consisting of only a few
neurons. Thirdly, the neural correlates of some plastic behaviours have been characterized.

Remarkably, C. elegans demonstrates both non-associative [26] and associative [27] learning
[28]. The first evidence for learning in this organism was the habituation of the TWR, an
avoidance behaviour wherein the worm rapidly moves backwards, changes direction, and
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moves forward again in response to a global mechanosensory stimulus. In experiments, this
stimulus is typically a tap to the side of the petri dish that the worm is swimming in. Habit-
uation, a type of non-associative learning, is often considered the simplest form of learning.
Non-associative learning describes learning phenomena wherein alterations in elicited be-
havior occur as a result of repeated presentations of a stimulus [6]. Habituation denotes the
case when repeated stimulation results in a decrease in responsiveness, with respect to one
or more parameters of a response. In the case of the TWR, repeated global mechanosensory
stimulation causes a decrease in reversal speed, probability and/or magnitude, depending
on the specific stimulus and presentation schedule [29]. Habituation is distinguished from
other forms of motor response inhibition (e.g. adaptation, fatigue) by dishabituation - the
rapid restoration of the inhibited response by a change in the eliciting stimulus. Once stim-
ulus presentation is ceased, the response recovers over time, a process termed spontaneous
recovery. If stimulus presentation is resumed after spontaneous recover, the habituation
that ensues is more rapid than the first time. The habituation rate can also be increased by
decreasing the strength of the stimulus or increasing the frequency of presentation [29, 6].

Although a large amount work has been done on habituation in C. elegans, the molecular
mechanisms responsible remain poorly understood. This is largely due to the fact that
different molecular processes seem to underlie habituation in different stimulus contexts [29,
30]. However, there is evidence that synaptic weight modification underlies habituation. For
example, long-term habituation, induced by blocks of repeated stimulation over relatively
long periods of time, is caused by down-regulation of glutamate receptors on the interneurons
of the tap-withdrawal circuit [29]. When glutamate receptors are activated, they cause
depolarization in the postsynaptic neuron, which may then propagate the signal onward.
Decreasing glutamate receptor expression at a synapse therefore represents a decrease in
synaptic weight.

A nine-neuron tap withdrawal circuit mediates the TWR, and is composed of four mechano-
sensory neurons (ALM, AVM, PLM, PVD) and five interneurons (AVA, AVB, AVD, PVC,
DVA) [31, 28]. The connectivity of this circuit is known, as are the relative weights of the
synapses in naive individuals [24, 31, 32]. Furthermore, the mechanosensory-interneurons
synapses are thought to be the site of the plasticity underlying TWR habituation [28],
rather than downstream synapses which are involved in reverse locomotion in general. This
is based on the fact that TWR habituation does not have any impact on spontaneous reversal
behaviour or reversals evoked by aversive thermal stimulation [33].

Finally, the neural correlates of TWR-relevant locomotive parameters are known. Let

δ =

∫ tend

tstart

VAV A − VAV B dt, (9)

where tstart and tend are the start and end times of a given stimulation, and VAV A and VAV B
are the membrane potential (mV) traces of interneurons AVA and AVB in the stimulated
worm. Then δ is directly proportional to the worm’s reversal distance in response to the
stimulation [32, 34].
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3 Framework

The latent dynamics of a neural circuit simulator during learning can be modeled approx-
imately as a discrete-time Markov process {Xt}0≤t≤T , with initial state X0 ∼ µ(x0) and
transition density

(Xt|Xt−1 = xt−1) ∼ f(xt|xt−1). (10)

Observations of neural activity during learning {Yt}0≤t≤T are independent given {Xt}0≤t≤T ,
and are distributed according to the emission density

(Yt|Xt = xt) ∼ g(yt|xt). (11)

This formulation defines a hidden Markov model (HMM) of the circuit’s activity [35, 36].
The contents of Xt depend on the specifics of the simulator, which, equipped with a synaptic
update rule, also implicitly defines the transition density. For SURF to be applicable to a
simulator, Xt must include a Nn × Nn synaptic weight matrix state wt and a membrane
potential state vt of size Nn, where Nn ∈ Z+ is the number of neurons in the simulated
circuit. Xt must also contain a synaptic update rule R parameterized by a constant vector
θ ∈ RNR , where NR ∈ Z+ is the number of constant parameters in R. Finally, with an eye
towards the experiment in section 3, assume that Xt includes an intracellular calcium con-
centration state ct of size Nn. The simulator’s biophysical parameters φ could be included
in Xt, but since they are constant throughout this thesis, they are left out. For notational
simplicity, let y denote {Yt}0≤t≤T , let x denote {Xt}0≤t≤T , and let zt = {vt, ct} denote the
electrochemical latent states. The dependencies between these states are summarized by
the graphical model in Figure 1. According to this model, the distribution over the circuit’s
synaptic dynamics can be formalized as the following posterior (derivation in Section 6.1):

p(w, R|y) ∝
∫
z

p(y|z,w, R)p(z,w|R)p(R)dz. (12)
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Figure 1: The hidden Markov model for a neural circuit simulator. The box indicates the
hidden states which comprise x0

As depicted in Figure 1, most measures of neuron activity are independent of w and R given
z. For example, calcium fluorescence and extracellular electrical activity are determined
by intracellular calcium concentration and membrane potential, respectively. Therefore,
p(y|z,w, R) = p(y|z). Moreover, by the conditional independence of the observations,

p(y|z) =

T∏
t=0

p(yt|zt), (13)

where p(yt|zt) is determined by the chosen activity measurement method. This is typically
an easily-sampled density, such as a Gaussian or Poisson. The distribution p(z,w|R) can
be written as

p(z,w|R) = p(z0,w0|R)

T∏
t=1

p(zt,wt|zt−1,wt−1, R), (14)

where p(zt,wt|zt−1,wt−1, R) is defined implicitly by the simulator and update rule, both of
which may be either stochastic or deterministic. In order to sample from this distribution,
the simulator (equipped with R) is simply iterated forward one step. The distribution
p(z0,w0|R) must be specified by the experimenter, and equals p(z0,w0) if the initialization
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of z0,w0 is independent of R. Finally, the prior p(R) is defined implicitly by the method
used to sample the discrete structure and continuous parameters of R. For example, SURF
employs a recursive random rule generator with maximum recursion depth d > 0, where the
probability of generating a rule with computational graph depth x is inversely proportional
to x if 3 ≤ x ≤ d+ 2 and zero otherwise. The generator is described in depth in Section 4.4,
and the code is presented in Section 6.6.

Thus, the integral in (3) can be reformulated as

∫
z

p(y0|z0)p(z0,w0|R)p(R)

T∏
t=1

p(yt|zt)p(zt,wt|zt−1,wt−1, R)dz. (15)

Since each distribution in this product can be sampled from, it is feasible to perform inference
to estimate the target posterior p(w, R|y) using techniques such as Metropolis-Hastings
or sequential Monte Carlo estimation. Unfortunately, these methods are computationally
expensive, especially in complex simulators. However, if the simulator and update rule are
deterministic, p(zt,wt|zt−1,wt−1, R) becomes a Dirac delta function, resulting in a low-
entropy posterior p(w, R|y). In this case, maximum a posteriori (MAP) estimation is a
reasonable, tractable approximation of the true posterior inference problem. Under the
deterministic assumptions, the trace x1:T is pre-determined given initial state x0, so w0 can
be estimated instead of w. Therefore, in this context, SURF attempts MAP estimation of
w0 and R given y, resulting in point estimates

w∗0, R
∗ = argmax

w0,R
p(w0, R|y) = argmin

w0,R
− log(p(w0, R|y)). (16)

(16) defines an optimization problem, with the negative log posterior taken as the objective
function to be minimized. Through the derivation outlined in Section 6.2, the objective
function can be reformulated as

− log(p(w0, R|y)) ∝ − log(Ez∼p(z|w0,R)[p(y|z)])− log(p(w0|R))− log(p(R)). (17)

To optimize the right hand side of (17), each of the three additive terms must be evaluable
for a given y, w0 and R. The expectation is difficult to compute, but can be approximated
using Monte Carlo (MC) integration if p(z|w0, R) can be sampled from. This distribution
can be sampled by randomly initializing the states in x0, iterating the simulator equipped
with the given R and w0 forward for T+1 observations, and extracting the trace z. Consider
N samples {(z(i)}1≤i≤N ∼ p(z|w0, R). Then by the law of large numbers,

− log(Ez∼p(z|w0,R)[p(y|z)]) = lim
N→∞

[
− log

(
1

N

N∑
i=1

T∏
t=0

p(yt|z(i)t )

)]
. (18)

The right hand side of (18) can be approximated with MC integration. The values of
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p(w0|R) and p(R) depend on the distributions used to initialize w0 and R respectively,
which can be chosen for ease of evaluation.

For each neuron, R maps some combination of the neuron’s activity, its upstream synaptic
weights, and the activity of its input neurons, to a weight update vector to be added to
the upstream synaptic weights. This mapping has a particular compositional structure
determined by the relations that comprise it, as well as parameters θ. Therefore, optimizing
R entails a joint search over the discrete structure space and continuous parameter space.
This kind of joint optimization is an inherently difficult problem [37], and is made more so
by the fact that the structure space is theoretically infinite. As a first tractable step, SURF
finds the best rule out of a finite set {R1, . . . , Rk} of k candidate rules, with associated
parameters θ1, . . . ,θk and compositional structures S1, . . . , Sk. Note that θk denotes the
parameter vector of Rk, rather than the kth entry of θ. To accomplish this, SURF solves
the following continuous optimization problem for each Rk:

w∗0,θ
∗
k = argmin

w0,θk

− log(p(w0,θk|y)) (19)

= argmin
w0,θk

− log(Ez∼p(z|w0,θk,Sk)[p(y|z)])− log(p(w0|θk, Sk)− log(p(θk|Sk)) (20)

and returns the Rk with the lowest − log(p(w∗0,θ
∗
k|y)) (i.e. R∗), along with its w∗0 and θ∗k.

The conversion of the objective in (17) to the one in (20) is shown in Section 6.3. p(θk|Sk) is
the density from which the parameters of Rk are initialized before optimization, and can be
chosen for easy evaluation (e.g. Gaussian). The continuous optimization can be performed
with standard techniques such as gradient descent.

The full SURF procedure, in the context of a finite set of deterministic candidate rules and
a deterministic simulator, is summarized by Algorithm 1 in Section 6.4. The framework
requires an observation trace y, a neural circuit simulator, a random rule generator G(d),
an emission density p(yt|zt) and methods for sampling x0 and evaluating p(w|θ, S) and
p(θ|S). Each of these components will now be described.
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4 Experiment

4.1 Neural Circuit Simulator

To build the neural circuit simulator, the nine-neuron tap-withdrawal circuit was dissected
from a deterministic full-connectome simulator called simple-C-elegans (SCE) [38]. SCE
is based on single-compartment biophysical models presented by Wicks et al. [32] and
Kunert et al. [39], wherein forward simulation of the membrane potential is accomplished
by numerically integrating over time a set of ordinary differential equations which describe
the relevant dynamics. The membrane potential vi ∈ R of a given neuron i is governed by
the equations:

cT
dvi
dt

= I
(s)
i − I

(c)
i − I

(e)
i − gm(vi − VL) (21)

I
(e)
i =

Nn∑
j=1

g(e)W
(e)
ji (vj − vi) (22)

I
(c)
i =

Nn∑
j=1

g(c)W
(c)
ji sj(vi − Ej) (23)

si =

(
1 + exp

{
K
vi − V Eqi

VRange

})−1
(24)

V Eqi = (A−1b)i (25)

Ajk =


1
gm
g(e)W

(e)
kj j 6= k

1 + 1
gm

∑Nn

k=1 g
(e)W

(e)
kj + g(c)W

(c)
ji / 2 j = k

(26)

bj = VL +
1

gm

Nn∑
k=1

Ejg
(c)W

(c)
kj . (27)

Here, v ∈ RNn is a vector of the neurons’ membrane potentials (in mV), and W
(c)
ij ,W

(e)
ij ∈ R

are the total number of chemical and electrical synapses (i.e. synaptic weight) from neuron

i to neuron j, at a given point in time. I
(s)
i , I

(c)
i , I

(e)
i ∈ R are the total currents flowing

into neuron i from external stimuli (e.g. injected current), chemical synapses and electrical

synapses, respectively (in amperes). V Eqi is the equilibrium membrane potential of neuron
i, and Ei is its reversal potential. gm is the membrane leakage conductance, and g(c) and
g(e) are the maximum conductivity of chemical and electrical synapses (in Siemens). g(c) is
modulated by the synaptic activity variable si. VL is the leakage potential, and VRange is the
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presynaptic potential range over which synapses are activated. {Ei}1≤i≤Nn , VL, gm, g
(c), g(e)

and VRange are included in the simulator’s biophysical constant state φ, and are set to
experimentally determined values [32]. The virtual length of the simulation (arbitrary units),
number of iterations per observation and dt are all set by the experimenter. These values
determine the simulator resolution, with the total number of iterations given by the virtual
length divided by dt.

Single-compartment models like this one assume that the physiological states and properties
of a neuron are identical at every point in that neuron. This assumption prevents the
simulator from capturing fine-grain dendrite dynamics which may be relevant to learning,
but is necessary to make the generation of a large number of samples from p(z|w0,θk, Sk)
tractable.

As the above differential equations indicate, SCE distinguishes between chemical and elec-
trical synapses. Therefore, this simulator defines a pair of synaptic weight state traces,
w(c),w(e) ∈ x, which represent as separate matrices the number of chemical and electrical
synapses between each pair of neurons in the circuit. Out of the box, the synaptic weights
in SCE are static. In order to accommodate the different functionalities of chemical and
electrical synapses, the simulator was modified with two update rules R(c) and R(e), so that
the chemical and electrical synaptic weights can be modulated independently.

In order to connect the calcium fluorescence observations y (outlined in Section 4.2) to
the hidden membrane potential trace v, the simulator is augmented with an additional set
of differential equations which model intracellular calcium dynamic as a low-pass filter of
membrane potential [40]. The intracellular calcium concentration ci ∈ R of neuron i with
membrane potential vi is determined by the equations:

dci
dt

= −κCaI(Ca)i − ci − cBase

τCa
(28)

I
(Ca)
i = gCas∞(vi − ECa) (29)

s∞(v) =

(
1 + exp

{
−(v − vH)

ρ

})
. (30)

Here, I
(Ca)
i denotes the calcium current across the membrane of neuron i and gCa and

ECa are the maximum conductivity and reversal potential of the calcium channels, respec-
tively. Time constant τCa controls the rate at which intracellular calcium concentration
returns to baseline cBase and κCa converts the calcium current to an intracellular calcium
concentration. The steady-state activation of the voltage-gated calcium channels, s∞, is pa-
rameterized by half-activation voltage vH and slope factor ρ. ECa, gCa, τCa, κCa, c

Base, vH

and ρ are included in φ, and set to experimentally determined values [40].

Finally, the habituation-inducing stimulus (i.e. tap) train is simulated through the phasic
injection of a depolarizing current into the mechanosensory neurons mediating response to
tap (PLM, ALM, AVM) [31], as outlined by Wicks et al. [32]. With a virtual simulation
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length of l and dt set to 0.001, the stimulus train contains 1000l stimuli.

The contents of the simulator define the states included in x. At each time step t, x
(i)
t ,

denotes: the chemical and electrical synaptic weight states w
(c,i)
t ,w

(e,i)
t ∈ RNn×Nn ; the

membrane potential state v
(i)
t ∈ RNn ; the intracellular calcium state c

(i)
t ∈ RNn ; and the

constant update rules R(c,i) = (θ(c,i), S(c,i)), R(e,i) = (θ(e,i), S(e)). Nn denotes the number
of neurons in the simulated circuit (9 in this case).

4.2 Observation Trace and Emission Density

Each entry in an observation yt corresponds to a noisy measurement of the activity of one of
neurons in the circuit of interest, at time t during learning. There are many ways to measure
individual neural activity in vivo. For example, extracellular electrical recording, performed
with implanted electrodes, measures electrical activity within a small radius around the
electrode tip [41]. Multi-electrode arrays are often used to triangulate the source of the
electrical activity, allowing the separation of signals from different neurons (spike sorting). In
order to avoid electrical pollution from sources outside the nearby neurons, a signal is usually
recorded only if it overcomes some user-set threshold. However, this threshold prevents
the reliable detection of membrane depolarization below the action potential threshold,
and complicates the detection of hyperpolarization. Since many of C. elegans’ neurons
are thought to be graded rather than spiking [42, 43], extracellular electrical recording is
insufficient for characterizing computationally-relevant neural dynamics in this organism.

Another common method for measuring neural activity is the imaging of intracellular cal-
cium using fluorescent calcium indicators. These indicators may be injected in the form of
fluorescent dyes into a brain region, where they then enter cells indiscriminately, or expressed
in a specific class of cells in the form of a transgenic protein. In either case, the indicator
fluoresces when it binds calcium, and the magnitude of this fluorescence is proportional to
the amount of intracellular calcium present in the neuron [44]. Calcium participates in a
vast number of cellular pathways [45], and is especially prominent in molecular processes in
the nervous system, such as neurotransmitter release [46] and long-term potentiation [47].
Membrane depolarization at the axon terminal of a neuron causes voltage-gated calcium
ion channels to open, resulting in a passive influx of extracellular calcium. Calcium triggers
neurotransmitter exocytosis into the synaptic cleft, propagating the signal to the postsynap-
tic neuron [48]. Therefore, intracellular calcium concentration can be used as an indirect
measure of the neuron activity in vivo. However, the calcium signal from an individual
neuron is weak, and even slight animal motion causes imaging artifacts, so calcium imaging
has traditionally been used to measure the aggregate activity of a group of neurons in a
stationary animal. Recently, advances in fluorescence imaging and tracking software have
facilitated whole-brain (∼ 100 neurons) calcium imaging in free-moving C. elegans, and led
to the correlation of the activity of individual neurons with locomotive behaviour [49, 50].
This opens the door to the analyses of neural dynamics during learning proposed by this
thesis, so calcium fluorescence is chosen as the measure of neuron activity represented by y
in the following experiments.

Unfortunately, no calcium fluorescent data are currently available for the neurons of the
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tap-withdrawal circuit during habituation of the TWR. Therefore, SURF is demonstrated
on synthetic calcium observations y ∼ p(y|z), where the intracellular calcium concentration
state c is included in z. The trace c necessary for sampling p(y|z) is generated by initializing

x0 and iterating the simulator for T + 1 observations. w
(c)
0 and w

(e)
0 are set to reflect the

experimentally determined number of synaptic connections in a naive C. elegans [24, 31, 32].
v0 and c0 are sampled randomly according to the procedure outlined in Section 4.3. R(c)

and R(e) are assigned Hebb’s rule (see Section 2.1), corresponding to the synapse weight
updates:

w(c) ← w(c) + τ (c)w (vvT � C(c)) (31)

w(e) ← w(e) + τ (e)w (vvT � C(e)) (32)

where the rate constants τ
(c)
w and τ

(e)
w are set to 0.001, C(c) and C(e) are the binary chemical

and electrical connectivity matrices respectively [24], and � denotes Hadamard multiplica-
tion. Hebb’s rule is chosen because it produces a membrane potential trace v which cor-
responds to decreasing reversal magnitude, in response to a habituation-inducing stimulus
train (Figure 2). Negative values correspond to forward locomotion, and may be interpreted
as sensitization of the forward response. Alternatively, this could model ‘below-zero’ habit-
uation, a phenomenon wherein continuing habituation past a response of zero magnitude
causes spontaneous recovery to be slower. Testing SURF on synthetic data confers the abil-

ity to directly compare the optimized values w
(c)∗
0 and w

(e)∗
0 against ground truth. This

approach also allows the computation of the loss resulting from the “true” values of w
(c)
0 ,

w
(e)
0 and R, providing a baseline against which the performance of estimated values can be

judged.

Figure 2: Left: Membrane potential traces for neurons AVA and AVB, with chemical and
electrical synaptic weights updated by Hebb’s rule. Right: Reversal magnitudes during the
nine simulated stimulations, according to (9). Magnitudes were all divided by the maximum
magnitude.
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Given the generated z, the observations are independent, so y can be obtained by sampling
the emission density p(yt|zt). The emission density can be modeled with a saturating Hill-
type function [40] with zero-mean Gaussian noise [51]:

p(yt|zt) = p(yt|ct) = κF (ct � (ct +Kd)) + dF +N (0, σF ), (33)

Here, each element of yt ∈ RNn denotes the fluorescence of one of the Nn neurons in
the circuit and the corresponding element of the random vector ct ∈ RNn denotes the
intracellular calcium for that neuron. κF and dF are scale and offset parameters for the
fluorescence trace, Kd is a measure of the fluorescent indicator’s affinity to the calcium (i.e.
dissociation constant), σF is the standard deviation of the Gaussian noise, and � denotes
Hadamard division. κF , dF and Kd, included in φ, are set to experimentally determined
values [40].

When generating the synthetic observation trace, each yt is obtained by evaluating the right
hand side of (33) using a sample from N (0, σF = 0.001) and the value of ct generated above.

The same density is used for computing p(yt|z(i)t ) when evaluating the objective function
during optimization. This probability is obtained using the following procedure:

µF = κF (c
(i)
t � (c

(i)
t +Kd)) + dF (34)

p(yt|z(i)t ) =
1

σF
√

2π
exp

{
−1

2

(
yt − µF
σF

)2}
(35)

where σF is again set to 0.001. Note that the mean of this Gaussian is generated by sampling
from p(y|c(i)) with σF = 0.

4.3 Hidden Trace Sampling

The evaluation of the SURF objective requires samples from p(z|w0,θ, S). Since the simu-
lator and update rules are deterministic, variability is induced in the samples {z(i)}1≤i≤N
by randomly initializing the states {v(i)

0 }1≤i≤N and {c(i)0 }1≤i≤N , and iterating the simulator
Tsim times for each initialization. Tsim is the virtual length of the simulation (in seconds)
divided by dt, both of which are set by the experimenter. φ is not randomly initialized, but
rather set to experimentally determined values [32, 39, 40] so that the simulator is able to
integrate. Inference of these parameters is itself an interesting problem [52], but will not be
addressed in this thesis. The habituation-inducing stimulus train used for the simulations
is outlined by Wicks et al. [32].

Each v0 is sampled from N (µ = −0.025, σ = 0.003). In order to prevent an extremely

low emission probability p(y0|c0), {c(i)0 }1≤i≤N are sampled using the importance sampling
procedure outlined in Section 6.5.
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w
(c)
0 ,w

(e)
0 ,θ(c),θ(e), S(c) and S(e) need to be initialized before the first optimization itera-

tion, and are assigned by the optimization procedure for all subsequent optimization steps.
On all optimization steps, all hidden trace samples are initialized with the same values for
these states. Each synapse is assigned a weight sampled from a Rayleigh distribution with
a scale parameter equal to the experimentally determined number of synapses of that type
between the corresponding pair of neurons [24, 31, 32]. This initialization scheme is used in
order to promote and expedite convergence to the correct weights, but should be replaced
with a synapse-agnostic distribution in future work. The independent sampling of the weight
matrices, and the fact that they are controlled by independent update rules, means that

− log(p(w0|θ, S)) = − log(p(w
(c)
0 |θ(c), S(c)))− log(p(w

(e)
0 |θ(e), S(e))) (36)

− log(p(θ|S) = − log(p(θ(c)|S(c))− log(p(θ(e)|S(e)) (37)

Finally, the structure S and parameters θ of each rule are sampled using the random
rule generator G(d), outlined in Sections 4.4 and 6.6. Each element of θ is sampled in-

dependently from N (1, 0.1) during the generation of the update rule. p(w
(c)
0 |θ(c), S(c)),

p(w
(e)
0 |θ(e), S(e)), p(θ(c)|S(c)), and p(θ(e)|S(e)) can be computed with these initialization

distributions when evaluating the SURF objective function.

4.4 Synaptic Rule Generator

Although the experimenter has the option of hand-programming candidate synaptic update
rules, SURF includes a random rule generator G(d) which automates this process. G(d) gen-
erates a random synaptic update rule R(c) or R(e) in the form of a string corresponding to a
valid compositional pytorch function, and attaches the corresponding initialized parameters
θ(c) or θ(e) to the computational graph for backpropagation. A chemical synapse update
rule is generated recursively from the following context-free grammar (CFG). Generating a
rule for electrical synapses is analogous.

P → torch.add(P, P) | torch.mul(P, P) | torch.exp(P) | torch.matmul(P, P) |
torch.unsqueeze(P, 1) | torch.unsqueeze(P, -1) | v bar | W c |
Variable(torch.tensor([z]), requires grad=True)

This CFG can be easily expanded with additional relations for a more comprehensive
search of the full structure space of programs. For example, conditional branching could
be included to switch between discrete processes depending on neural state. If the CFG
is converted to a probabilistic language, sampling and Bayesian operations, which may
be prevalent throughout the brain’s algorithms [53, 54], could be incorporated as well.
Variable(torch.tensor(z), requires grad=True) represents a new constant rule pa-
rameter, and becomes an entry in θ(c). If this is randomly chosen to be the next phrase P

added, it is initialized with a sample from N (1, 0.1). On a given optimization step, the θ(c)

is the same for all {x(i)
t }1≤i≤N,0≤t≤T . W c and v bar are variables in the code. The former

represents w
(c)
t and the latter represents v̄t ∈ RNn where each element v̄t,i = vt,i − V Eqi .
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Once a rule is generated in the form of a string, a lambda function is used to evaluate it:

eval(’lambda self, v bar, W c, C c: {0}’.format(rule.string))

where C c is the experimentally determined binary connectivity matrix for chemical synapses
[24]. Generating an R(c) always begins with the relation torch.mul(C c, torch.mul{}{})
so that only existing synapses are updated. The empty argument is assigned a randomly
chosen relation with a probability of 0.5, or a randomly chosen state or new constant, each
with probability 0.25. The arguments of all added relations are assigned recursively in the
same manner. If a recursion depth of d is reached (stopping criterion), each argument of the
current relation is assigned a state or new constant, which also constitute base cases. Once
a rule has been generated, its executability is tested in order to avoid invalid programs, such
as those involving matrix multiplications with mismatched dimensions. If a rule cannot be
executed, a new one is generated. As one of the principle contributions of this thesis, the
code for G(d) is presented in section 6.6.

4.5 Results

SURF successfully optimized the parameters of θ1, . . . ,θk of a set of automatically gener-
ated candidate learning rules R1, . . . , Rk, improving their ability to recreate the synthetic
observations and resulting in the losses decreasing to approach that achieved by the true

learning rule. SURF was also able to estimate the initial synaptic weights w
(c)
0 and w

(e)
0 ,

when the weight update dynamics were governed by a rule with the same compositional
structure as the one used to generate the synthetic observations. The pair of rule structures
which achieved the lowest loss was the one which matched the update rules used to generate
the synthetic observations. This pair of candidate structures also resulted in the best qual-
itative reconstruction of the membrane potential and intracellular calcium concentration
traces underlying the synthetic observations

The following results were produced by the following candidate pairs of randomly generated
rule structures:

Candidate update rule pair A:

w(c) ← w(c) + C(c) � eθ
(c)
1 w(c)v (38)

w(e) ← w(e) + C(e) �
(
eθ

(e)
1 v + θ

(e)
2

)
(39)

Candidate update rule pair B:

w(c) ← w(c) + C(c) � exp {θ(c)
1 + vTv} (40)

w(e) ← w(e) + C(e) � (θ
(e)
1 vvT + eθ

(e)
2 ) (41)

The set of candidate rule pairs also included the hand-coded version of Hebb’s rule with
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parameters to be optimized (denoted candidate update rule pair C):

w(c) ← w(c) + C(c) � θ
(c)
1 vvT (42)

w(e) ← w(e) + C(e) � θ
(e)
1 vvT (43)

Here, θ
(c)
i and θ

(e)
i denote the ith parameter of the corresponding chemical and electrical

synapse update rules, respectively. For the following experiments, the observation trace
was produced with virtual stimulation time set to 4.0 and dt set to 0.001, resulting in 4000
simulator iterations, 160 observations, and 8 simulated tap stimuli.

As the loss curves in Figure 3 indicate, SURF was able to optimize the rule parameters and
initial synaptic weights for all pairs of candidate rule structures, resulting in a rapid drops
towards the true loss. Although not clear from Figure 3, the lowest loss is achieved by the
optimized ‘true’ pair of candidate rule structures (C). The losses stabilized near their final
values around optimization step 1200.

Figure 3: Loss curves for the optimization of candidate learning rule pairs A, B and C. The
legend contains the final loss for each pair of candidate rules. The dashed red line represents
the loss obtained with the initializations used for generating the synthetic observations.

Based on these results, it seems that all three pairs of candidate structures were sufficient
to reproduce the observations to a reasonable degree. Predictably, the second-best pair of
candidate rule structures was B, which includes an equivalent electrical synapse update rule

to the true one, if θ
(e)
2 is set to zero. However, the weight update dynamics defined by
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candidate rule pair C were qualitatively superior to A and B at reproducing the hidden
cellular dynamics which underlie the synthetic observations. Special attention should be
paid to the membrane voltages traces (Figure 4) of neurons AVA and AVB, as these neurons
determine the reversal behaviour of the worm during each of the 8 simulated taps. Figure
4 clearly demonstrates that the simulator is best able to produce membrane potentials
corresponding to the desired behavioural changes when equipped with candidate rules C

and the corresponding w
(c)∗
0 ,w

(e)∗
0 ,θ(c)∗ and θ(c)∗. This is evident both in the increasing

distance between the membrane potentials of AVA and AVB as stimulation proceeds, and
the membrane potential dynamics of AVB within each of the eight tap stimulations. This
further supports the idea that SURF returns the update rule and initial synaptic weights
which best explain the observed learning trace.

Figure 4: Membrane potential traces for all neurons in the tap-withdrawal circuit, simulated
with the optimized update rule parameters and initial synaptic weights for each pair of
candidate rule structures. The top left panel corresponds to candidate structure pair A, top
right to pair B, and bottom to pair C. Dashed lines indicate the ground truth, produced by
the simulator when equipped with the initial weights and update rule used to produce the
synthetic observations.
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The optimization of some of the entries of w
(c)
0 and w

(c)
0 are presented in Figure 5. For the

majority of these entries, the true value was only retrieved when the simulator was equipped
with the true update rule structures (C).

Figure 5: Optimization of initial synaptic weights. The top row depicts three electrical
synapses, and the bottom row depicts three chemical synapses. The initial weights used for
generating the synthetic observations are indicated by the red dashed line.
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5 Discussion

This thesis presents SURF, a framework for estimating the naive synaptic weight matrix
and update rule which result in synaptic weights dynamics that correspond to learning of
a particular behaviour in a real organism. This is accomplished by automatically and ran-
domly generating compositional structures for a set of candidate update rule parameterized
by θ, and using maximum a posteriori estimation to maximize p(w0,θ|y). y is a time se-
ries of noisy measurements of neuron activity during learning in the behaviour of interest.
The learning behaviour on which SURF is tested is tap-withdrawal response habituation in
C. elegans, with the synthetically generated calcium fluorescence of tap-withdrawal circuit
neurons, resulting from Hebbian synaptic updates, used as the observations. Calcium fluo-
rescence data from the tap withdrawal circuit during habituation are not currently available,
so SURF was tested on synthetically generated observations with handset initialization of
the synaptic weight matrix and update rule. The results of these experiments are promising.
SURF was able to identify the rule structure used to generate the observations from a set of
candidate rules. When the simulator was equipped with this rule structure, SURF was also
able to estimate with reasonable accuracy the true initial synaptic weights. This suggests
that theoretically, if SURF were applied on all possible update rule structures, it would
identify one which produces simulator dynamics matching the given observations.

The next test for SURF is to replace the synthetic observations with more biologically repre-
sentative ones. This is especially important because the synthetic observations used in this
thesis do not capture the identifying features of habituation, such as more rapid habituation
for weaker stimuli and after spontaneous recovery. There are several ways to obtain real
observations from C. elegans as it undergoes TWR habituation, apart from collecting the
necessary calcium fluorescence data. Recently, a framework has been submitted for inferring
membrane potential and intracellular calcium concentration for a set of unobserved neurons
given calcium fluorescence measurements from a different set of neurons in C. elegans [52].
If the calcium fluorescence of a large subset of neurons was measured during habituation
in a real organism, this framework would allow the estimation of intracellular calcium in
the neurons of the tap-withdrawal circuit, which could then be converted to calcium fluo-
rescence and used as observations to test SURF. Although this type of data is available for
free-moving C. elegans [49, 50], it has not yet been obtained for worms undergoing TWR
habituation. However, there is a wealth of video recording data of worm behaviour over
the course of TWR habituation. A new framework is currently under development by the
author of this thesis which infers the membrane voltage and intracellular calcium concen-
tration of all motor neurons from body shape observations extracted from video recordings
of C. elegans during locomotion. The ultimate goal is to expand the latent space to include
more of the worm’s connectome, and since the tap-withdrawal circuit is directly connected
to the motor circuitry, it may be possible to infer the intracellular calcium concentration of
these neurons accurately. If this is the case, these values can be converted to fluorescence,
and used as real observation with which SURF can be tested. A third option is to use
feature-based inference to estimate the update rule and naive synaptic weights from quan-
titative measurements of reversal parameters over the course of TWR habituation. This is
possible because features such as reversal magnitude and probability can be extracted from
membrane potential traces, using equations such as (9). The inference can be conducted
using pre-existing methods, such as approximate Bayesian computation, which compares
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features extracted from simulated data against observed features [55, 56]. Another interest-
ing experiment is the introduction of randomness into the transition density, through either
a stochastic simulator or synaptic update rule, or both. As biologically-valid simulators are
developed for more learning circuits in different organisms, the array of scenarios on which
SURF can be tested will expand.

Another important area for future work is the development of a strategy for joint opti-
mization over the continuous space of rule parameters and naive synaptic weights, and the
discrete space of rule structures. One potential avenue for solving this problem is to treat
the task as an infinitely many-armed bandit, with a finite budget of optimization steps
[57, 58]. With this approach, the goal is to explore the potential of different update rule
structures by spending optimization steps, then picking the most promising rule structure
and fully optimizing its parameters. At each step, this algorithm could choose to further
optimize a previously considered rule structure to get a better sense of its value (i.e. exploit)
or to sample a new rule structure, which may perform better than any of the previously
considered ones (i.e. explore).

Finally, there is reason to believe that SURF cannot possibly capture the algorithms by
which synaptic strengths are modified during TWR habituation in C. elegans. For example,
it has recently been suggested that some aspects of TWR habituation are controlled by
long-range neuropeptide signals from neurons which do not participate in the synapse being
strengthened [30]. This would suggest that Hebbian principles are not well-suited to describe
the algorithm by which synaptic weights are modified in TWR habituation. If this is true, an
entirely new construction of SURF is necessary, where update rules take arguments relating
to the activity of distant neurons. This also means that the simulator to which SURF is
applied in this thesis needs to be augmented to model the effects of long-range neuropeptide
signals on membrane potentials.

Nonetheless, the results presented in this thesis are significant for several reasons. It is
demonstrated that a neural simulator with static synaptic weights can be augmented with
Hebbian synaptic update dynamics, while maintaining stable and predictable simulator
outputs. It has also been shown that the compositional structure of such a rule has a
significant impact on the neural activity dynamics it can model. This suggests that there
may be synaptic update rules governing synaptic plasticity in real organisms which cannot
be adequately modelled with the current canon of learning rules, but that still adhere to
the Hebbian idea that synaptic weights are modulated based on pre- and postsynaptic
activity. Furthermore, SURF is able to estimate the correct initial synaptic weights, and
to assign the lowest loss to the pair of candidate rules structures which matched the true
rules. Overall, SURF represents an interesting first step in the attempt to infer the synaptic
weight dynamics which underlie behavioural learning in real organisms.
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6 Appendix

6.1 Generative Process

p(w, R|y) =

∫
z

p(w, z, R|y)dz by the law of total probability

=

∫
z

p(y|w, z, R)p(w, z, R)

p(y)
dz by Bayes’ theorem

∝
∫
z

p(y|w, z, R)p(w, z, R)dz w.r.t. w, R

=

∫
z

p(y|w, z, R)p(z,w|R)p(R)dz by Bayes’ theorem

6.2 Objective Function Derivation

− log(p(w0, R|y))

∝ − log

(∫
z

p(y|z,w0, R)p(z,w0|R)p(R)dz

)
by Section 5.1

= − log

(∫
z

p(y|z,w0, R)p(z|w0, R)p(w0|R)p(R)dz

)
by Bayes’ theorem

= − log(p(w0|R)p(R)Ez∼p(z|w0,R)[p(y|z,w0, R)]) by defn. of expectation

= − log(p(w0|R)p(R)Ez∼p(z|w0,R)[p(y|z]) by the HMM

= − log(Ez∼p(z|w0,R)[p(y|z)])− log(p(w0|R))− log(p(R)) by log product rule
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6.3 Objective Function Simplification

− log(p(w0, R|y)) ∝ − log(Ez∼p(z|w0,R)[p(y|z)])− log(p(w0|R))− log(p(R))

Let R = (structure S, parameters θ)

⇒ − log(p(w0,θ|y)) ∝ − log(Ez∼p(z|w0,θ,S)[p(y|z)])− log(p(w0|θ, S)

− log(p(θ|S))− log(p(S))

∝ − log(Ez∼p(z|w0,θ,S)[p(y|z)])− log(p(w0|θ, S)

− log(p(θ|S)) w.r.t. w0,θ
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6.4 SURF Algorithm

Algorithm 1 Synaptic Update Rule Finder

1: procedure SURF(d, k, n,N ∈ Z+)

2: L ← 0k×1

3: for i← 1 to k do

4: (θi, Si)← G(d) . Randomly initialize rule structure and parameters

5: w0,i ∼ p(w0|θi, Si) . Randomly initialize initial weights

6: for t← 1 to n do . Descend gradient n times, with variable step size η

7: for j ← 1 to N do . Generate N samples for MC integration

8: z(j) ∼ p(z|w0,i,θi, Si)

9: end for

10: Li ← − log

(
1
N

∑N
j=1

∏T
t=1 p(yt|z

(j)
t )

)
− log(p(w0,i|θi, Si))− log(p(θi|Si))

11: [w0,i,θi]← [w0,i,θi]− (η)t∇wi,0,θi
(L)

12: end for

13: end for

14: j ← argmin1≤i≤k Li

15: return (w0,j ,θj , Sj)

16: end procedure

26



6.5 Initial Calcium Importance Sampling

Algorithm 2 Initial Calcium Importance Sampler

1: procedure InitializeCa(N,Nn ∈ Z+)

2: c0 ← 0N×Nn

3: for n← 1 to Nn do

4: s ∼ N10N (0, I10N (5 · 10−10))

5: s← abs(s) . Element-wise absolute value

6: s← κF (s� (s +Kd) + dF

7: p← p(s) ∼ N10N (y0, I10N (σF )) . σF equals 0.001

8: p← exp(p−max(p))

9: p← p / ‖p‖1

10: u ∼ UN (0, 1)

11: u← (u + [0 : N − 1]) / N

12: i← digitize(u, cumsum(p)) . Using numpy functions

13: c0:,n ← s[i] . Python-style array indexing

14: end for

15: return c0

16: end procedure
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6.6 Recursive Random Rule Generation Algorithm

1

2 class Operation:

3 def __init__(self , string , args):

4 self.string = string

5 self.args = args

6 self.curr_arg = 1

7 self.n_args = len(args)

8

9 class Rule:

10 def __init__(self , d):

11 self.string = ’’

12 self.curr_d = 0

13 self.max_d = d

14 self.params = {}

15 self.ops_stack = []

16 self.operations = build_operations ()

17 self.states = build_states ()

18 build_rule(self)

19

20 def build_rule(rule): # entry into recursion

21 rand_operation = Operation(’torch.mul(C_c , torch.mul({}, {}))’, (’param’,

’prim’, )) # guarantees that rule’s computational graph depth > 2

22 rule.ops_stack.insert(0, rand_operation)

23 args = [build_arg(rule , arg) for arg in rand_operation.args]

24 rule.string = rand_operation.string.format (*args)

25 return

26

27 def build_arg(rule , arg): # recursive function

28 if rule.curr_depth == rule.max_depth

29 if arg == ’param’:

30 return get_parameter(rule)

31 elif arg == ’state ’:

32 return get_state(rule)

33 elif random.choice ([0, 1]):

34 return get_state(rule)

35 else:

36 return get_parameter(rule)

37

38 else:

39 if arg == ’param’:

40 return get_parameter(rule)

41 elif arg == ’state ’:

42 return get_state(rule)

43 elif random.choice ([0, 1]): # p(operation) = 0.5

44 rand_operation = get_operation(rule)

45 args = [build_arg(rule_str , arg) for arg in rand_operation.args]

46 return rand_operation.string.format (*args)

47 else:

48 if random.choice ([0, 1]): # p(state) = p(param) = 0.25

49 return get_state(rule_str)

50 else:

51 return get_parameter(rule_str)

52

53 def get_operation(rule):

54 rand_operation = random.choice(rule.operations)

55 rule.curr_depth += 1

56 rule.ops_stack.insert(0, rand_operation)

57 return rand_operation
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58

59

60 def get_state(rule):

61 if rule.ops_stack [0]. curr_arg == rule.ops_stack [0]. n_args:

62 rule.curr_depth -= 1

63 del rule.ops_stack [0]

64 else:

65 rule.ops_stack [0]. curr_arg += 1

66 return random.choice(rule.states)

67

68

69 def get_parameter(rule):

70 if rule.ops_stack [0]. curr_arg == rule.ops_stack [0]. n_args:

71 rule.curr_depth -= 1

72 del rule.ops_stack [0]

73 else:

74 rule.ops_stack [0]. curr_arg += 1

75 return ’torch.exp ({})’.format(get_fresh_param(rule))

76

77

78 def get_fresh_param(rule):

79 # sample new theta entries from Gaussian with mean=1 sd=0.1

80 param = ’self.parameters .{}{}’.format(rule.param_string , str(rule.

param_idx))

81 rule.param_idx += 1

82 x = 1.0 + np.random.normal(0, 0.1)

83 rule.parameters[param] = Variable(torch.tensor ([x]), requires_grad=True)

84 return param

85

86

87 def build_operations (): # new relations can be added here

88 mul = Operation(’torch.mul({}, {})’, (’prim’, ’prim’, ))

89 add = Operation(’torch.add({}, {})’, (’prim’, ’prim’, ))

90 exp = Operation(’torch.exp ({})’, (’prim’, ))

91 us1 = Operation(’torch.unsqueeze ({}, 1)’, (’prim’, ))

92 us2 = Operation(’torch.unsqueeze ({}, -1)’, (’prim’, ))

93 return [mul , add , exp , us1 , us2]

94

95 def build_states ():

96 return [’v’, ’W_c’]

97

98 if __name__ == "__main__":

99 rule = Rule(d) # d = user specified max recursion depth
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Eviatar Yemini, Shawn Lockery, and Manuel Zimmer. Global brain dynamics embed
the motor command sequence of Caenorhabditis elegans. Cell, 16:656–669, 2015.

[50] Jeffrey P. Nguyen, Frederick B. Shipley, Ashley N. Linder, George S. Plummer, Mochi
Liu, Sagar U. Setru, Joshua W. Shaevitz, and Andrew M. Leifer. Whole-brain calcium
imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proceedings
of the National Academy of Sciences of the United States of America, 113:E1074–E1081,
2016.

[51] Yuriy Mishchencko, Joshua T. Vogelstein, and Liam Paninski. A Bayesian approach
for inferring neuronal connectivity from calcium fluorescent imaging data. The Annals
of Applied Statistics, 5:1229–1261, 2011.

[52] Andrew Warrington, Arthur Spencer, and Frank Wood. The virtual patch clamp:
Imputing C. elegans membrane potentials from calcium imaging. arXiv preprint
arXiv:1907.11075, 2019.

[53] Lars Buesing, Johannes Bill, Bernhard Nessler, and Wolfgang Maass. Neural dynamics
as sampling: A model for stochastic computation in recurrent networks of spiking
neurons. PLoS Computational Biology, 7:e1002211, 2011.

[54] Timothy R. Darlington, Jeffrey M. Beck, and Stephen G. Lisberger. Neural implemen-
tation of bayesian inference in a sensorimotor behavior. 21:1442–1451, 2018.

[55] Paul Fearnhead and Dennis Prangle. Constructing summary statistics for approximate
Bayesian computation: semi-automatic approximate Bayesian computation. Journal
of the Royal Statistical Society, Series B, Statistical Methodology, 73:419–474, 2012.
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